Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

4,5,9,10-Tetrahydro-4,9-methanodithieno-[3,2-b:3', $\left.2^{\prime}-f\right][1,5]$ diazocine

Tomoshige Kobayashi, ${ }^{\text {a* }}$ Takashi Moriwaki ${ }^{\mathrm{a}}$ and Motoo Shiro ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan, and ${ }^{\text {b }}$ X-Ray Research Laboratory, Rigaku
Corporation, Matsubara-Cho 3-9-12, Akishima, Tokyo 196-8666, Japan

Correspondence e-mail:
tkobaya@gipac.shinshu-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.101$
Data-to-parameter ratio $=21.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}$, which is the first thiophene analogue of Tröger's base, the dihedral angle between the two thiophene rings is $100.73(7)^{\circ}$.

Comment

Tröger's base, (1), and its analogues have recently received much attention as a basic skeleton to construct molecular receptors, due to the rigid structure and concave shape (Demeunynck \& Tatibouët, 1999). However, Tröger's base and its analogues exhibit various values of the dihedral (hinge) angle between the two aromatic rings, depending on the nature of the fused aromatic rings and their substituents, in spite of the rigid bicyclic skeleton (Demeunynck \& Tatibouët, 1999). For example, the dihedral angle of (1) was reported as being 92.9 (2) and 97.4 (2) (Wilcox, 1985; Sucholeiki et al., 1988). The angles vary from 88.6 (1) to 104.01 (6) $)^{\circ}$, depending on the substituents of the benzene ring. The dihedral angles of heteroaromatic analogues, such as pyrazole [96.4 (4) ${ }^{\circ}$; Cudero et al., 1997] and porphyrin (81.0 and 89.7°; Crossley et al., 1995) have also been reported.

(1)

(2)

We recently reported the synthesis of the title compound, (2) (Kobayashi et al., 2002), which is the first example of a thiophene analogue of Tröger's base. An X-ray crystal structure determination of (2) was undertaken in order to estimate the concave space as well as the dihedral angle between the two thiophene rings.

No significant differences of bond lengths and angles for the thiophene rings of (2) were observed, compared with those previously reported for thiophene (Nygaard et al., 1969) and a thiophene fused with a norbornadiene skeleton (Kobayashi et al., 1993). The dihedral angle between the two thiophene rings was found to be $100.73(7)^{\circ}$, which is slightly larger than that in Tröger's base. Therefore, compound (2) seems to have a longer concave space than that of (1), and it is of interest to synthesize molecular receptors based on (2), as well as to investigate the effect of the concave space for selective binding. The synthetic approach toward new molecular receptors will be reported elsewhere in due course.

Experimental

The title compound, (2), was prepared according to the procedure of Kobayashi et al. (2002), and recrystallized from methanol to give colorless blocks.

Received 11 April 2003 Accepted 22 April 2003 Online 9 May 2003

Figure 1
A view of the title compound, (2), showing the atom-labelling scheme and 50% displacement ellipsoids for non-H atoms.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2} \\
& M_{r}=234.33 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.700(2) \AA \\
& b=19.601(5) \AA \\
& c=7.332(2) \AA \\
& \beta=112.58(2)^{\circ} \\
& V=1021.8(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID Imaging	2979 independent reflections
\quad Plate diffractometer	2255 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
ω scans	$R_{\text {int }}=0.034$
Absorption correction: multi-scan	$\theta_{\max }=30.0^{\circ}$
$(A B S C O R ;$ Higashi, 1995)	$h=-10 \rightarrow 10$
$T_{\min }=0.879, T_{\max }=0.976$	$k=-27 \rightarrow 26$
12265 measured reflections	$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.101$
$S=1.02$
2969 reflections
136 parameters

H -atom parameters constrained
$D_{x}=1.523 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 10963
reflections
$\theta=3.0-30.0^{\circ}$
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=93.2 \mathrm{~K}$
Block, colorless
$0.15 \times 0.10 \times 0.05 \mathrm{~mm}$

2979 independent reflections
2255 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=30.0^{\circ}$
10
$l=-10 \rightarrow 10$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.057 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (\AA).

S1-C2	$1.728(2)$	$\mathrm{N} 9-\mathrm{C} 15$	$1.477(2)$
S1-C11	$1.729(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.362(3)$
S6-C7	$1.726(2)$	$\mathrm{C} 3-\mathrm{C} 12$	$1.430(3)$
S6-C13	$1.724(2)$	$\mathrm{C} 5-\mathrm{C} 13$	$1.511(3)$
N4-C5	$1.486(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.368(3)$
N4-C12	$1.433(2)$	$\mathrm{C} 8-\mathrm{C} 14$	$1.434(3)$
N4-C15	$1.478(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.512(3)$
N9-C10	$1.483(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.370(3)$
N9-C14	$1.437(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.371(3)$

H -atom positional parameters were calculated geometrically ($\mathrm{C}-$ $\mathrm{H}=0.95 \AA$) and these atoms were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=U_{\text {eq }}($ parent atom $)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Crossley, M. J., Hambley, T. W., Mackay, L. G., Try, A. C. \& Walton, R. (1995). J. Chem. Soc. Chem. Commun. pp. 1077-1079.

Cudero, J., Pardo, C., Ramos, M., Gutierrrez-Puebla, E., Monge, A. \& Elguero, J. (1997). Tetrahedron, 53, 2233-2240.

Demeunynck, M. \& Tatibouët, A. (1999). Prog. Heterocycl. Chem. 11, 1-11.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessee, USA.
Kobayashi, T., Moriwaki, T., Tsubakiyama, M. \& Yoshida, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1963-1967.
Kobayashi, T., Ono, K., Suda, H., Yamashita, Y. \& Kato, H. (1993). Bull. Chem. Soc. Jpn, 66, 2707-2713.
Molecular Structure Corporation \& Rigaku (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Nygaard, L., Nielsen, J. T., Kirchheiner, J., Maltesen, G., Rastruo-Andersen, J. \& Sørensen, G. O. (1969). J. Mol. Struct. 3, 491-506.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sucholeiki, I., Lynch, V., Phan, L. \& Wilcox, C. S. (1988). J. Org. Chem. 53, $98-$ 104.

Wilcox, C. S. (1985). Tetrahedron Lett. 26, 5749-5752.

